
A GUIDE
TO TEST
AUTOMATION

Who is this guide for?

Abstract

Why Automate

How do we get started? The iSDM Approach -
Discover, Design, Build, Deploy, Realise

 iSDM Discover
 iSDM Design
 iSDM Build
 iSDM Deploy
 iSDM Realise

Is the prevalence of test automation driving the
increased use of the title Test Engineering?

Conclusion

A Guide to
Test Automation

2

2

2

5

5
10
13
16
19

20

21

I n f u s e W h i t e p a p e r | A G u i d e t o T e s t A u t o m a t i o n

2

Abstract

This guide is written for anyone interested in implementing test automation, at any stage
of project maturity using Agile, DevOps, Waterfall or Bimodal delivery methods. Its aim is to
provide the reader with a handy guide on the subject that includes key considerations for the
implementation of test automation.

Who is this guide for?

This guide explores various discussions and findings based on several roundtables hosted by
Infuse at Next Generation Testing 2016, TestExpo 2016, and Agile Methods and DevOps 2017
conferences, combined with best practices from Infuse’s test automation practice leaders and
practitioners. The guide is structured around the Infuse Services Delivery Methodology (iSDM)
and is written by several people at Infuse.

We also summarise the market trends on test automation. For example, a large divide remains
between ambition and reality when it comes to test automation coverage: many strive for
roughly 75% (non-unit) test automation coverage yet just 16% of testing activities are automated.
To bridge the divide, we need better test automation people, processes, and tools (see the Test
Automation Challenges and Test Automation Benefits diagrams sourced from the 2017-18 World
Quality Report). Test automation may be difficult but it can generate superb results. Reducing test
delivery times from a matter of weeks to hours or minutes is not uncommon when automating
regression packs.

Why Automate?
Organisations decide to automate tests for many reasons, such as:

 1) Cost - manual testing is resource-intensive and therefore, costly.

 2) Time - manual testing cannot keep pace with certain tasks.

 3) Accuracy – there can be a greater chance of error with manual testing many repetitive tasks.

 4) Trend – many organisations have realised benefits from automation, so there is pressure to follow suit.

 5) Scale – manual testing cannot match the complex iterations of automated testing.

Organisations are automating because there is an increasing need to support faster

time-to-market and the demand for high-quality software releases is converging.

We need, and demand, incrementally better software releases, and we need them delivered

faster. One of the best ways to tackle this problem is with test automation. In fact, the number

one recommendation in the 2017-18 World Quality Report is to increase the level of smart test

automation. However, there are no shortage of key challenges in implementing automation (see

Figure 1). The reality is that test automation is desirable but difficult.

A large divide remains between ambition and reality when it comes to test automation coverage:

many strive for roughly 75% (non-unit) test automation coverage yet just 16% of testing activities are

automated. To bridge the divide, we need better test automation people, processes, and tools (see

Figure 1). Test automation may be difficult but it can be very beneficial (see Figure 2).

The decision to invest in automation must not be taken lightly as the risk of failure is real. There are

many pitfalls to avoid. Some of the biggest failures we have seen are due to organisations trying to

conform to what they think is the right thing to do. For example, we have seen some organisations

try to automate everything. They have been misguided to strive for 100% automation, which is a

foolish – and expensive - thing to do.

Test automation can take a significant amount of resources to implement, and yes, you will initially

make mistakes. However, if you can the right mix of people, process, and technology, you can

realise the many benefits of test automation.

3

4

Figure 1: Test Automation Challenges (Source: World Quality Report 2017-18)

Figure 2: Test Automation Benefits (Source: World Quality Report 2017-18)

Automating will require discipline, process adoption, checklists, and entry/exit gates. It
doesn’t matter if it’s Agile, Waterfall or DevOps; it needs a methodology.

At Infuse, we use iSDM, the Infuse Services Delivery Methodology, for delivering
testing and iPMM, the Infuse Project Management Methodology, as our governance
framework (each summarised in Figure 3 and Figure 4). You will need to consider tools
when working out your process, but needn’t – and shouldn’t – select tools until you
determine your process and needs.

How do we get started?
The iSDM Approach – Discover,
Design, Build, Deploy, Realise

iSDM - Discover
The Discover Stage is the first step in our approach to test automation delivery. If you
are not working with third parties, there is still merit in this stage to clearly understand
your motivations, goals, etc. with test automation. If you are working with third parties,
during this stage, your partners should seek to obtain a thorough understanding
of your business and define the project objectives through a statement of work.
At this stage, we look to evaluate the client’s needs by collecting information via
questionnaires, conversations, interviews, documentation, workshops, and past
experience.

I n f u s e W h i t e p a p e r | A G u i d e t o T e s t A u t o m a t i o n

6

Figure 3: The iSDM Customer Engagement Model

Figure 4: Infuse Service Delivery Process (iSDM) with approach detail)

7

Build a business-case
If your investment in test automation cannot be
supported by a solid business case, i.e. if there
is not an identifiable return on investment (ROI),
then you should not proceed. Key to building a
business case for test automation is to answer the
following key questions:

Current state analysis (AS-IS) OPEX:

• What is the number of manual test cases
 executed per run?
• What is the cost per person to run the test?
• How many people are running manual tests?
• How many times is it run per year?
• How many defects leak into production due to
 inadequate regression testing?
• What is the cost of resolving a defect in
 production?
• What is the cost of testing project slip per day?
• Calculate the Capital Expenditure (TO-BE):
• What is the tooling cost (licenses)?
• How much will it cost to automate the tests?
• Calculate the OPEX for automation:
• How much will maintenance cost per year to
 keep the tests working?
• How much will it cost to run it each time?
 (manual and automation)
• How many times will you run it in a year?
• How many tests do you need to automate?
• What is the cost of test tool license support
 and/or renewal per annum?
• How many defects can you prevent leaking into
 production in this approach?

Typical Assumptions we use
in our business cases:

• Average project delay in testing – 5 days
• % reduction in regression defects – 80%
• % reduction in project slippage – 80%
• % test case maintenance – 10%
• % of tests’ automated – 80%
• Cost for resolving a production defect - £2,500

Figures 5-7 show some anonymised output
samples in a business case.

Figure 5: 3-year cost comparison of manual
testing vs. automated testing.

Figure 6: The cumulative costs of manual testing
vs automated testing.

Figure 7: Cumulative savings of automated testing.

I n f u s e W h i t e p a p e r | A G u i d e t o T e s t A u t o m a t i o n

8

Find the right people to lead the way
Finding the right person that can strategically map out a course for automation is an important first step.
Don’t be too afraid to disrupt the status quo. Progress requires change, which means going against
the status quo. Having at least one or two people on your team with a track record of delivering test
automation can go a long way. Alternatively, partner with a third-party vendor that has the skills and
experience needed to delivery test automation success.

Enterprise vs Open Source tools
An increasingly frequent problem is a rushed decision to ditch enterprise tools and adopt open-source
tools without first working the business case. It may feel like it’s cheaper to go Open Source but it’s no
guarantee. Baseline your business case during the Discover phase with a proof of concept (POC) or proof
of value (POV) exercise to define your milestone and success criteria as well as confirm your estimations
and assumptions.

Risk, actions, issues and decisions log
While building your business case and doing your POC or POV you will understand the critical risks
behind the actions and decisions you have made. Keep this log well maintained when you need to justify
your choices. While Agile places more value in working software than comprehensive documentation, it
does not mean no documentation.

Focus on the foundations
Start your automation efforts early in the process, at the unit testing level. Get developers to write
automated unit tests. It’s the foundation of good test automation and key to the test automation pyramid
(covered later).

Use the right people the right way
It’s a common pitfall to think that anyone can automate. Don’t underestimate the technical aspects of
test automation and the skills that they demand. Ensure your tools and framework support the right
people in your organisation. Not everyone will become an automated test engineer but that doesn’t
mean your non-technical testers cannot be involved in the automation. A good framework will allow you
to leverage your non-technical testers to deliver test automation.

Vary your automation approach per the task at hand
You may need a different test tool for different test levels in the testing pyramid.
For example, with microservices, you don’t need to worry about UAT testing.
However, you do need to think about API testing and service and network virtualisation.
Think about the right technology or framework to handle your automated testing pyramid.

9

Follow the concept of the test pyramid
Aim to have many more low-level unit tests than high-level end-to-end tests
running through a GUI (strive for at least 80%-unit test coverage). While high-level,
end-to-end tests can be brittle, expensive to write, and time-consuming to run, you
still need them as a second line of defence. We believe having the right tool and
framework (such as our useMango functional automated test tool and framework)
can combat these issues.

Determine what part of the software test pyramid makes sense to prioritise
Some start with unit tests while others start with GUI tests. There’s no one right
place to start. Just start reducing the test triangle of debt as soon as possible.
Consider your own organisational need and start there.

Figure 8: The Test Pyramid

Figure 9: The Test Pyramid of Debt

I n f u s e W h i t e p a p e r | A G u i d e t o T e s t A u t o m a t i o n

10

Mandate Test-Driven Development (TDD)
Developers are under time pressure to deliver code so if testing isn’t part of their requirements, it may
not happen. One way to increase unit test coverage is to mandate developers to use TDD. This can come
from Project Managers or Programme Managers if they have the authority to do. If developers aren’t
expected to write unit tests, defects will inevitably occur and may not be found until much later in the
development lifecycle, which will become very costly and time-consuming to fix

Just do it
Starting is half the battle. Testers can be nervous at first when it comes to automation. It can feel like
you’re losing control of your work to developers (of writing a lot of test scripts or learning a new tool).

iSDM - Design
The Design Stage is the process of creating an optimised solution from the knowledge and information
that is gathered at the Discover Stage.

Review project deliverables
Review your project deliverables to ensure they can be delivered and tested (e.g. stories, design
documents, sprint plans, roadmaps and acceptance criteria are achievable).

Requirements coverage
Demonstrate the percentage of requirements covered by tests, including their latest execution status,
using the test management tools you have.

Test coverage
Demonstrate the components impacted, using the test management tools you have.

Test strategy
Your test strategy should cover the approach you will take. It should be pragmatic and follow a certain
delivery methodology. Remember that software build processes are rarely completely repeatable, and
many mistakes are made during the integration and build stages. Do not underestimate the need for
intelligent regression strategies.

Test plan
Plans are needed to show the scope of testing at the systems Integration phase, to include
components/systems impacted, environments to be used, tests planned, resources required and
reporting mechanisms.

Which regression tests should I automate?
When striving to increase coverage, perhaps to 85% (non-unit) test automation coverage as many desire,
you need to decide what to automate. Here are some key considerations:

11

Start small
Start with mundane, daily tasks that are
repeatable. You can learn this through results
analysis.

Only cover as much as you can maintain
This rule of thumb helps you focus on the basics.
For example, automating logins or registrations.

Choose shorter, smaller tests
In general, the bigger the test, the more unreliable
the test is. Small tests are better
to automate because they are more reliable.

Choose tests with relatively low amounts of
interdependence and decouple where possible
If something goes wrong at the start of an
automated test with interdependence, so, too
will the rest of the test. Create tests that are
independent of each other.

Keep it simple
Automated tests are code, and like all code, the
more complicated it becomes, the greater the risk
that it will contain bugs. Think of regression tests
that you know are simple and repeatable. Add
complexity to test automation only after you’ve
established a baseline of simple automated tests.

Select tests that matter
Ask yourself, if the test fails, does it matter?
If yes, how much? This is key to the prioritisation

of tests to automate. For example, a login failure is
a critical failure whereas a slightly altered logo file is
not. Also consider the business case, i.e. the payback
on what you’re automating. Does the benefit
outweigh the investment cost (time and money)?
Generally, the rule we use is if you run it more than
two or three times, automate it.

Ensure that you are building the data underneath
the test automation to support it
Tests are only as good as the data that drives
them within the execution. Think about the data to
create, read, update and delete so the process is
repeatable. Think about the data that will also drive
the actions on the test.

How do I prioritise tests to be automated?
You now have a list of tests to automate. Likely, a
lengthy list. Consequently, you now need to prioritise
the automation of these tests to get some quick wins
and prove the value of test automation.

In addition to the points outlined below, Francis Miles
of Infuse has provided his thoughts on the subject in
a LinkedIn post here.

Always use a risk-based testing approach
There are a few things you need to consider in terms
of choosing parameters. Let’s start with
the probability of failure and frequency of use
as outlined in Figure 10:

You then feed these categories into a test case selection model as outlined in Figure 11.
This can then help you prioritise your tasks.

Figure 10: How to prioritise tests: Probability of failure vs. Frequency of use

I n f u s e W h i t e p a p e r | A G u i d e t o T e s t A u t o m a t i o n

12

Size
As a rule of thumb, the smaller the test, the better.

Business importance
Are you automating the tests that are of interest to your end user and therefore, your business?

Data
Prioritise tests that have reliable data. More on this later in the document on test data strategy.

System Under Test
Testing from a command line of API is easier. Legacy systems, in general, are harder to automate tests due
to outdated UIs. The longer the life cycle of the system under test, the more valuable automation becomes
because it is re-run multiple times.

Maintainability
How maintainable are the tests? Are you trying to automate something that will change?
What is the cost of change?

Avoid the pitfall of trying to automate everything
The earlier you automate testing in the process, the less need for automation later in the process. Start with unit
testing in development, if possible. In Agile, test-driven development demands developers to use unit testing
as they develop to address quality early in the process. These unit tests are written before the code, which is
far earlier in the process than when there are many tests. This requires testing throughout the development
process, which helps with defect leakage and enables defect prevention.

Figure 11: Test case selection model

iSDM Build
At the Build Stage, the build deliverables are implemented in accordance with the
design specification. Before building out your test automation, you ought to first
invest in a test automation framework to keep pace with development and
customer demand.

As a reminder, a test automation framework is an integrated system that sets the rules of
automation for a specific product. This system integrates the function libraries, test data
sources, object details and various reusable modules. These components act as building
blocks that need to be assembled to represent a business process. The framework
provides the basis of test automation and simplifies the automation effort.

The testing framework is responsible for:

 • Defining the format in which to express expectations;
 • Creating a mechanism to hook into or drive the application under test;
 • Executing the tests;
 • Reporting the results

Setup test environment including framework
What type of framework do I build? Do I build
a page object model, hybrid, action-based, or
keyword based framework? The problem with
these choices is that they are all combinations
of 2nd, 3rd and 4th generation approaches and
therefore, still require a degree of maintenance.

The keyword-based approach ensures that the
maintenance is performed at the keyword level.
Any change to a keyword is reflected in all the
places where it is being used. This is still quite
a low-level approach to building reusable assets,
though, and can be further abstracted to page
object models by combining keywords across

a web page or form and still require maintenance.
The frameworks approach, however, simplifies
the process of test case creation, allowing non-
technical subject matter experts to focus on
creating high-level business process test flows,
while test engineers concentrate on enabling
test automation.

Infuse also has a test framework and tool
useMango™, which enables your testers to generate
more page objects automatically with
a scan in seconds. Where useMango cannot scan,
a test engineer can create this in their chosen test
tool (e.g. Selenium WebDriver or UFT) and make this
available via useMango™.

13

How does test data factor in to test automation?
You now know which tests you will automate and in which order you will automate them.
Now before you start automating tests, you need to consider the data that you will use to drive them.

Here are some key considerations for test automation data:

 1. Each test should be independent of other tests and baselined datasets.
 2. Ensure baseline datasets are source controlled.
 3. Develop a custom API to perform CRUD (Create, Retrieve, Update and Delete).
 Do not rely on test ordering to perform CRUD with multiple tests.
 4. Use open-source libraries, such as Faker, to generate your own realistic looking data or
 purchase a tool
 5. Don’t only update and check UI. Always perform layer checks (i.e. Database) to ensure
 that a record has been updated correctly.
 6. Use an API to setup, configure and teardown.
 7. If you have the budget, invest in a test data management tool

In addition to the above considerations, there are all the test data strategies to consider,
which are listed in Figure 12.

Figure 12 also shows the impact of each strategy on the efficiency of test automation:

 • Creating data and data resets are diametrically opposed in the advantages
 and disadvantages
 • Batch data creation provides a compromise between strategy 1 and 2
 • Finding and making data requires investment in tools and utilities. It is generally our
 recommended approach but it needs to be supported by a business case.

14

Figure 12: Test data strategies and their impacts

Other technical considerations for test automation
Now you’re almost ready to start automating.
But before jumping in, it’s helpful to have these best practices in mind:

 1. Apply DRY and DAMP principle (DRY - Don’t Repeat Yourself and DAMP - use
 Descriptive and Meaningful Phrases) to improve reusability and Readability.
 2. In general, high volume, high risk tests are the best candidates for automation.
 3. Reduce overlap and duplication from the first day. Once you let duplication creep in,
 it will get worse and become more expensive to remove.
 4. Thoroughly understand the data flows.
 5. Always work on the principle that automation is to cover risks and report on the state
 of the system quickly.
 6. Do not try to automate everything. For example, checking PDF outputs can be done
 outside of core automation.
 7. Treat test code as production code.
 8. Be thoughtful.
 9. Ensure that tests are readable. Readability is even more important than the
 correctness. Unless you can read a test clearly, you will not be able to judge whether
 it is testing the right thing.
 10. Aim to run all your automated tests quickly and reliably, ideally as part of your
 build/CI process.
 11. Automation people are not just automation developers. They are also testers and
 they should be testing, not spending all their time on fixing broken tests.
 12. Abstract shared and common functionality into classes. This allows test automation
 code to be written quicker, look cleaner and be easier to maintain.
 13. Split function libraries based on functional areas (Excel Functions/Data Table Functions/
 SQL Functions etc). Monolithic function libraries without logical structure or organised
 content can be a nightmare.
 14. Comment functions within libraries thoroughly. At Infuse, we usually create HTML
 documentation for all our function libraries. This provides user friendly documentation
 for all functions and classes with very little effort (1 batch file call with 3 arguments
 documents everything).
 15. If there is something not natively available in your tool, create it. Whether it be a class to
 extend the logging and checkpoint functionality (before-during-after checkpoints,
 custom logging, element/object specific checkpoints) or function libraries to cover
 functionality not available in the native coding language – there is always an option.
 16. If you are not sure of a business process, it is vital that you ask. Time spent automating
 the wrong logical flow is time and money wasted. In almost all cases business users will
 jump behind automation, as it saves time and money, and will happily assist in any way
 they can to get it up and running.
 17. If any code is duplicated in a test script, it shouldn’t be there. Duplicated code should be
 abstracted to function libraries or classes.
 18. Comments! Comments! Comments! One cannot stress enough how important well
 commented code is. All scripts should be commented throughout, as well as
 commenting of code in function libraries.

15

I n f u s e W h i t e p a p e r | A G u i d e t o T e s t A u t o m a t i o n

What are some of the more common problems with test automation that ought to be avoided?
In addition to best practices, it also helps to be mindful of these common pitfalls with test
automation:

 1. Too much time spent on fixing broken tests.
 2. Not keeping automation assets clean.
 3. Not having started out with the right framework.
 4. Slow and flaky tests.
 5. High maintenance framework and tests.
 6. Silos can kill automation efforts.
 7. Avoid “whack-a-mole” testing by getting unit testing right. (Whack-a-mole testing occurs
 when you fix one issue only to find another pops up because you can’t get to the root
 of the problem).
 8. Picking the wrong tool.
 9. Inadequate planning and expectation management.
 10. Relying on the wrong people.

iSDM - Deploy
The Deploy Stage is where the assets created in the Build Stage are deployed.
Once you have built your tests you are ready to execute and start testing but before you do that:

Baseline test scripts
Execute your tests against the application three times so you have a baseline set of results
to compare against.

Execute test scripts
Now you can execute your tests and see the productivity gains.

Gather and distribute test preparation metrics and test reports
Don’t forget all that testing needs reports. Decide what you need to report.
Typically, at Infuse we’d report at least the following items:

 • Progress: Reporting against the baseline to show if testing is making progress
 and identify areas of risk that may prevent the testing from meeting its schedule.
 • Quality: A set of reports that show overall quality of the build and the coverage of
 testing against requirements. It allows for a risk-based view on the deliverable to be
 taken from factual information.
 • Transformation: A set of reports that show the value that testing automation has
 brought to the project/programme and reports that identify the risk areas and investment
 areas in respect of environment availability and quality.
 These reports are detailed in Figure 13.

16

17 Figure 13: Key Test Automation Report

I n f u s e W h i t e p a p e r | A G u i d e t o T e s t A u t o m a t i o n

Chair defect review meetings
A defect review meeting is also commonly called triage, from the French word meaning to sort.
At a minimum, the triage process should validate defect severities, make changes as needed,
prioritise resolution and assign resources.

How do we ramp up?
After you have automated the basics, it’s time to start thinking about ramping up your automation
efforts with these considerations:

Don’t try to automate everything – find the right amount of automation.
Automate what makes sense. As it is unprincipled to attempt to test everything, so, too, is it to try
to automate every test. As a rule of thumb, if you run the test 2 or more times, automate it.

Get a test automation tool
Yes, we are biased because we offer a test automation tool and framework (useMango). But scripting
all automated tests is very difficult to scale because scripting is a highly technical activity, requiring high
maintenance levels, and presents challenges sourcing the right people because qualified testers that
can script well are scarce. There are pros and cons of open source and commercial software.
In general, open source tools provide greater flexibility at a lower cost and commercial tools provide
better functionality and scalability. When making the business case for a test automation tool,
determine whether your organisation prefers the more traditional Capex approach (lump sum payment
upfront for software) or the increasingly popular Opex model (monthly or annually
recurring payments).

Build your test automation framework
Different frameworks work for different test levels. For example, you would have one framework for UI
and another for API. Think of your test automation framework around your test automation tools. Tools
like Selenium, JIRA and UFT are built for varying degrees of technical proficiency.
You can leverage a tool like Selenium if you know how to code. Development can help you with an
automation framework and build out your test automation framework as you build out your tests. Infuse
leverages useMango™ as the framework across different tools where applicable.

Shift team structures
Shift from siloed development and test teams to smaller product teams with both developers and
testers. This Agile approach can enable automation because developers and testers need to work
more closely and for testers to maintain pace with development, automation helps.

Adapt testing to delivery teams
With every new feature released, the time for testing increases if you can’t automate the test. To
increase coverage, one option is to include end-to-end testing as part of your definition of done (in an
Agile model). Avoid the pitfall of just automating the latest feature without finding the time to automate
the basics.

Find other places for automation
Automation can be applied beyond testing the product or system. For example, you can automate
testing the process. In an Agile team, you may need to get involved in other things. Automating delivery
through continuous integration and continuous delivery and using service and network virtualisation.

18

The Realise Stage is where the benefits of the delivery are demonstrated. At Infuse, we use the
Realise stage to validate the engagement has ended and to confirm we have met the contractual
goals. From a test automation delivery perspective, a few things should be enveloped in the Realise
Stage:

Confirm Benefits are met
As part of the project completion report, confirm objectives of the project have been met. This will
involve identifying & communicating the business benefits of the project. Refer to the benefits baselining
task that was carried out during the Discover stage. (If benefits will not be realised until future date then
ensure a process is in place to capture this).

Post Implementation Review (PIR)
After every test automation project, a demonstration should be made to all key IT and non-IT
stakeholders with a demonstration of the original business case, the technology developed and
the lessons learned.

Typically, the areas that should be covered in a PIR are:

 Area 1: Project Performance - Identifying whether the project:
 • Delivered the business benefits
 • Achieved the objectives specified
 • Remained within the scope defined
 • Produced the deliverables defined
 • Completed within the planned project schedule
 • Delivered within the budget defined
 • Met the forecast resource levels defined

 Area 2: Project Conformance: The extent to which the project has conformed
 to the relevant methodology adopted

 Area 3: Project Achievements: Identify the major achievements of the project and describe
 the positive effect that each achievement has had on the business (including ROI)

 Area 4: Project Issues: List any project issues and describe the effects they have had on the business

 Area 5: Lessons Learned/ Recommendations: Describe the lessons learned from undertaking
 this project and list any recommendations for similar projects in the future.

iSDM - Realise

You can also use containerization to spin up environments to enable test automation without the need
for real environments, which can be expensive and time-consuming to setup.

Use Behaviour-Driven Development (BDD)
We addressed Test-Driven Development earlier (TDD). Behaviour-driven development is an
evolutionary step from TDD that combines TDD with the interests of the business.

Embrace DevOps Pragmatically
The full benefits of test automation can only be realised if you deploy your app frequently. Agile
development with DevOps can enable frequent releases. Changing your process to Agile and DevOps
and then adding Agile tools like JIRA and DevOps tools like Docker will help.

19

Is the prevalence of test
automation driving the
increased use of the title
Test Engineer?
There was a tangent at one of the roundtables that we hosted on test automation
about the shift of many testers’ job title from test analyst to test engineer. Some view
the change as meaningless; just another title to describe the same job responsibilities.
Others view it as a meaningful change for the role of the tester.
They argue that Analysts provide a detailed examination of the elements or structure
of something whereas engineers design, build, and/or maintain structures (or engines
or machines). As we discussed during this roundtable, 3 key questions for test
automation dovetail with the 3 key responsibilities of an engineer:

 1. How do we start automating = designing?
 2. How do we ramp automation = building?
 3. How do we sustain and maintain automation = maintaining?

Therefore, we would argue that the more testers become involved in test automation,
the more apt the title of test engineer becomes.

20

useMango™ is a functional automated test tool and test automation framework that
offers the benefits of test automation at a lower risk compared to traditional test
automation approaches such as accelerator, keyword or action word frameworks.
Designed with pre-built agile libraries/components, multi-platform Inspector tools,
tooling for automation assets management and integration to modern ALM tools,
useMango™ reduces both test execution time and cost.

We hope you enjoyed this guide to test automation. It covered a lot of ground:
how to get started with test automation, determining which tests to automate,
prioritising the tests to be automated, and effective use of test data. It also covered
several key considerations for test automation: test case statuses and reporting,
common pitfalls to avoid, and how to ramp up test automation.

In our view, there are several points worth reiterating. Firstly, organise your process.
While it’s tempting to jump into automation tooling, there is no point in automating
a flawed process. Secondly, build a solid business case for test automation. It’s
an investment to make test automation work, so make sure your organisation
understands the value of it. Thirdly, find good people/partners with experience.
Automation is complicated, so be wary of people that only know enough to be
dangerous. Fourthly, invest in an automation tool and framework to facilitate your
automation efforts. Lastly, we at Infuse have done a lot of work in test automation
and can help you with all facets of it: planning, training, tooling, and delivery.

To learn more, reach out to us today at info@infuse.it

Conclusion

21

http://infuse.it/products/usemango-test-automation/?utm_source=Infuse&utm_medium=Content&utm_campaign=Test_Automation_Guide_Part_1

Infuse is a UK software testing company that provides modern software testing, transformation
consulting and test environment management. We specialise in test automation and
performance engineering.

Our strong alliance and partner network enables us to deliver the right solution for every client.
Infuse is a Micro Focus partner in Application Delivery Management (ADM), an Oracle Gold
Partner in Application Quality Management (AQM), a CA Partner in Dev and Test and SAP Partner.
We have a global partner network to enhance our delivery capabilities beyond that of a typical
UK software testing company.

To learn more about Infuse, please visit

ABOUT INFUSE

22

http://infuse.it

For more information,
email _info@infuse.it or visit infuse.it

Infuse Consulting Ltd | QEII Conference Centre
Broad Sanctuary | London SW1P 3EE | UK
Tel: +44 (0)20 3755 5135

http://infuse.it
http://linkedin.com/company/infuseconsulting
https://twitter.com/infusegroup
http://facebook.com/infuse-consulting

	Button 27:
	Button 16:
	Button 28:
	Button 29:
	Button 30:
	Button 31:

