
PERFORMANCE
ENGINEERING
101

1

Chapter 1:
Introduction

Chapter 2:
Changing Application Architecture

Chapter 3:
Performance Engineering rather
than Performance Testing

Chapter 4:
Future Trends

P2

P2

P3

P9

 Performance Engineering

An abstract on a modern
approach to ensuring
software applications scale
and remain performant
under load.

Chapter 1 :
Introduction

2

Welcome!,

This short article looks at Performance Engineering as it relates to software design
and seeks to provide a suggested best practice approach to achieving highly scalable
and performant applications embracing new application architecture choices such as
Microservices and Containers.

Performance engineering is a natural evolution of the simple static performance testing model
historically part of QA, to encompass the entire Software Development Lifecycle (SDLC).
The emphasis has shifted (left?) to focus on ensuring release quality and accelerating the
speed of delivery as enterprises seek to deploy software changes over ever decreasing
time-scales, which requires a strategic rather than purely tactical approach to application
performance management.

In the following chapters we will discuss:

 • Changing application architecture choices

 • Performance Engineering rather than just Performance Testing

 • Future trends and how they may further disrupt how we approach Performance Engineering

Application design has evolved significantly over the last 10 years finally dispensing with the
legacy client-server model in favour of highly distributed architectures based around Cloud
and the Web.

Chapter 2:
Changing Application
Architecture

I n f u s e W h i t e p a p e r | P e r f o r m a n c e E n g i n e e r i n g

3

The increasing dominance of Cloud has
made (Web) Applications easier than ever
to deploy and the number of cloud hosting
providers has increased to offer public,
private and hybrid offerings to suit most
business models.

In terms of performance engineering these
new architectures present new challenges.
Highly distributed design means there are
lot of interacting components and services
often provided by 3rd-parties. Any of these
could impact application performance and
scalability.

The desire to improve the speed and simplicity of deployment has led to the adoption of new
design choices like microservices which breaks application functionality down into small highly
specialised components and containerization which packages application components
into small self-contained deployable modules that can be easily managed and scaled.
Both these technologies allow enterprises to break up and re-engineer often monolithic
applications in efficient and agile ways so that changes can be rapidly designed, tested
and deployed in days rather than weeks or months.

This is especially important in eCommerce where business success or even survival now depends
on the ability to rapidly react to changes in customer buying patterns and competitor offerings.

Node.js from Google is another design choice gaining in popularity taking JavaScript to another
level as part of enterprise application deployment. Node works well with containers
complementing the self-contained and highly scalable modular deployment model.

New Design Choices

The evolution from Waterfall to Agile methodologies has changed the way we design and build
software applications. It is arguably easier to implement performance engineering in an agile
shop particularly with the move to componentizing application functionality.
With the increasing popularity of microservice based architecture which has a relatively simple
testing model (consumer and endpoint) this makes it straightforward to implement
for example; performance testing in Dev.

Everything’s Agile

I n f u s e W h i t e p a p e r | P e r f o r m a n c e E n g i n e e r i n g

4

As discussed, embracing new design choices make it easier and quicker to code and deploy
software applications but this brings it own risks. The more frequently you make changes to the
code-base the greater the chance of accidentally introducing performance defects. This makes
it increasingly important your performance engineering approach is appropriate and effective.

Performance regression can be surprisingly subtle where individual releases appear fine but the
cumulative effects of many releases slowly degrades the end user experience. You have
to identify and correct performance defects early and regularly performance benchmark your
production deployment to ensure that this doesn’t happen.

Risks to Accelerating
the Speed of Delivery

Modular and highly distributed application design also leads to increased potential for
performance bottlenecks. Every API call whether to an external or internal service has the
potential to impact application performance. Affiliate content embedded in application web
pages is a notorious source of end-user slow-down invisible to data-centre based monitoring
solutions.

Often the responsibility for maintaining service availability and responsiveness is down
to 3rd parties so it’s important that applications are engineered to deal with service outage
or slow-down. This is particularly true for mobile application clients where cellular
and network outage is a frequent occurrence.

Performance Pinch-Points

Something slightly off topic although still relevant to performance engineering is the
performance of packaged applications, typically CRM or ERP, and their stated and actual
ability to support load.

The underlying architecture of many of these software packages remains legacy so they do not
necessarily scale well in response to load. An understanding of modern performance
engineering concepts can provide potential clients with much greater insight into the suitability
of a given vendors solution for their needs. It would not be unreasonable for example, to expect
a vendor to be able to demonstrate support for a given level of load by providing a recent
performance benchmark.

Packaged Applications

5

Modern performance engineering is (or should be) a full SDLC discipline embracing DevOps, Automation and
Business planning. Cloud simplifies the creation and management of test environments allowing rapid spin-up /
tear-down and service virtualization (SV) enables early testing of application functionality.

Chapter 3:
Performance Engineering rather than
just Performance Testing

The scope of monitoring visibility has also evolved and now needs to cover last-mile/ first-mile
with particular emphasis on understanding the quality of the end-user-experience. No longer
are data-centre only monitoring solutions sufficient to provide the performance visibility required.

New technology choices like Containers can present monitoring challenges as the internals may
not be visible to your current monitoring technology. With highly distributed architectures it is
important to understand how all your application components interact so consider deploying one
of the current generation of Application Performance Monitoring solutions. Most have specific
support for new technologies like Containers to give you the visibility you need

Monitoring Visibility

It has long been established that you cannot
effectively performance test without automation.
The same is now true for defect tracking, build
control and release deployment.

Automation servers like Jenkins have
become increasingly popular and the
move to simplify integration through
the use of published API has provided
a lot of flexibility in the choice and
makeup of automation solutions.

Automation focus in performance
engineering terms is really about enabling
performance testing and continuous
performance benchmarking, across
Dev, QA and Ops.

REQUIREMENT
ANALYSIS

REQUIREMENT
ANALYSIS

DESIGN

IMPLEMENTATION

TESTING

SDLCSoftware/Sstem
Development
Life Cycle

I n f u s e W h i t e p a p e r | P e r f o r m a n c e E n g i n e e r i n g 1 0 1

6

Performance (by) Design

True performance engineering begins with application design and should always take
the following into account:

 • Geo distribution and access choice (i.e. Mobile, Browser) of end users
 • A sync requirement of UX design
 • Release cycle frequency once deployed
 • Key Performance Indicators (KPI) for the application and hosting infrastructure
 • Monitoring solution for EUE and Application performance
 • The theoretical and expected maximum end-user concurrency
 • The theoretical and expected maximum throughout for web / application / database
 servers, message queues and service endpoints (internal and external)
 • Horizontal and Vertical scaling of infrastructure and application components
 to meet increased demand
 • Performance ramifications of interaction with other systems (internal and external)

As you can see there are many design choices that can influence application performance and
scalability but the focus should be on maintaining end-user experience quality at peak load
which is principally a function of capacity and smart UX design. The application needs to:

 • Remain available
 • Maintain core functionality
 • Provide an acceptable level of responsiveness.
 • Scale!

Design / Dev

Performance Defects and Work Items

Monitoring the quality of release is a primary measure of the effectiveness of performance
engineering therefore performance defects should be captured and tracked in the same manner
as functional defects. The aim should always be to reduce the number and shorten
the time to identify - in other words shift-left.

Sprint planning for agile shops should always include performance (NFR) work items where they
exist. Sprint exit criteria should evidence that any performance targets have been met and there
has been no unexplainable performance regression across builds.

7

Developers should be testing for performance and scalability as soon as a viable software
component is available. The move to service-based design makes this increasingly
straight-forward as service virtualization techniques allow easy mock of service consumer
or end-points. It is entirely possible to test against production performance targets and SLA’s
even at this early stage.

Performance testing should be automated where-ever possible using Open Source offerings like
JMeter or even bespoke test-harness and included in the overnight Build/Deploy/Test.

Alternatively if you have already invested in a licensed performance testing solution like
Neoload or Load Runner consider making this available to Dev. The goal is to make
performance metrics readily available for comparison and trending across builds.

Performance Testing

Performance testing has traditionally been confined to the QA function within IT, identifying
and building test assets (scripts and test scenarios) that reflect discrete sets of end user
functionality. By extension this requires a partial or full application deployment to be available
before meaningful testing can take place.

Delaying performance testing until this stage greatly increases the risk of performance
defects creeping into release candidates and importantly reduces the time available to
identify and resolve defects.

Combined with an absence of performance testing in Dev this increases the likelihood that
performance defects will be surfaced delaying the release whilst they are investigated or
risking a go-live decision with known defects in the hope that they can successfully be dealt
with post-deployment. This leads to:

 • Increasing the amount of testing required
 • Slowing the velocity of release
 • Release deployment with known defects
 • Reduction in quality of release

QA / Test

Shift-Left Performance Engineering Benefits

By incorporating performance engineering into Design and Dev the number and severity of
performance defects will be reduced increasing the quality of release candidates passed on to
QA. This reduces the amount of system performance testing required and makes it much more
likely that release candidates will meet performance targets for scalability and response time.

I n f u s e W h i t e p a p e r | P e r f o r m a n c e E n g i n e e r i n g 1 0 1

8

Deployment / Operations

It is important that those who make the release decision have accurate performance data
available for the release candidate. Implementing performance engineering across the full
SDLC makes this happen and importantly ensures that performance benchmark data is
always available for comparison with future releases and to inform production monitoring
of the application.

Release Deployment

Often referred to as BAU testing the importance of regular performance benchmarking
of production websites cannot be overstated. This is the only reliable way of detecting any
creeping regression and to ensure that your core systems are ready for peak loading events,
scheduled or unscheduled.

Whilst it may not be possible test every aspect of core functionality in production, test assets
created as part of system testing in QA are the starting point for this process and should be
carefully curated so that BAU testing can be safely executed as required. For eCommerce
websites this typically means deprecating activity that involves payment gateways (unless
a reliable and scalable sandbox is available) and exclusion of links to the supply chain.

BAU performance testing can also help to validate key replatforming decisions - for example;
migrating core application hosting to cloud, delivering a comparison of before and after
performance to confirm that there has been no response time or scalability regression.

Production Performance Benchmarking

It is now more important than ever to have a comprehensive monitoring strategy in place so all
application components can be monitored under load. To address this requirement Application
Performance Monitoring solutions (APM) have come to the fore in recent years. These solutions
seek to offer real-time 24x7 monitoring of application and infrastructure performance - last mile
to first mile - automatically alerting and initiating remedial action should problems occur.
The latest generation of these toolsets has also seen the incorporation of Artificial Intelligence
techniques (AI) to accelerate fault domain identification and root cause analysis.

Current leading solutions include:

 • DynaTrace
 • Appdynamics
 • New Relic

The Importance of Monitoring

9

We have discussed the recent move to microservices and containerization both of which simplify
scalability and increase speed of delivery. However new design choices in themselves do not
change the basic principles of effective performance engineering.

They may influence your automation tooling choice for example; to ensure that you have
appropriate monitoring coverage, or trigger a re-think of coding standards to ensure that
your dev teams use them effectively.

Regardless, you still need to ensure your application design is sound from a capacity and
scalability perspective and you still need to track performance defects and carry out regular
performance benchmarks.

Chapter 4:

Future Trends

Internet of Things (IOT)

Embedding software into devices. Not necessarily a new concept but now easier than ever
to implement and covering devices as diverse as smoke alarms, vacuum cleaners and cars.
The big change has been the integration possible using the IFTTT standard where common
protocols allow you to do things like turn your house lights red in response to a smoke alarm
detection event.

IOT devices tend to operate as self-contained entities but may periodically need to connect
to native vendor systems for software updates and data exchange. Such devices invariably
use API’s to communicate so the same performance risks apply; endpoint availability and
responsiveness and the growing proliferation of IOT devices only increases the pressure on
supporting vendor systems to scale in response. Interestingly security concerns have also been
prominent with several high profile instances of DDOS attacks using IOT devices weaponised
as load injectors (performance testing for the wrong reasons!) IOT protocols can now be tested
directly with native support present in recent releases of mainstream performance test tooling.

Disruptive Technology

I n f u s e W h i t e p a p e r | P e r f o r m a n c e E n g i n e e r i n g 1 0 1

10

Compared to just 5 years ago there is clearly a much greater industry appreciation of
the importance of good design in ensuring core application performance and scalability.
More businesses need to embrace full SDLC performance engineering.

The benefits are clear for all to see and the implementation process can be staged and gradual.
Simply moving to recording performance defects and introducing a level of performance testing
in Dev can reap significant rewards in terms of increasing software quality and speed of delivery.

Increased Adoption

Hopefully this short discussion on performance engineering has been interesting and
thought-provoking. Infuse as a company specialise in helping clients achieve performance
excellence so if you would like to discuss how we can help your own performance engineering
journey please don’t hesitate to get in touch.

In Conclusion

Artificial Intelligence (AI)

The emergence of AI as part of application design adds a new level of complexity
to self-learning and expert systems. Arguably early AI systems were little more than
implementations of linear math however they are rapidly becoming more sophisticated
particularly where this is applied to big data and fault domain analysis.

Performance engineering considerations for AI are still evolving however they are likely to
encompass distributed processing requirements either loosely or tightly coupled (you may
remember grid-computing) so have the potential to require rapid exchange of large amounts
of data across network connections by way of API.

AI is also having a impact on automation tooling with the emergence of:

 • Automated detection and resolution of functional and non-functional defects where
 applications effectively test themselves. (A natural evolution of BDD/TDD and CI)
 • Increased sophistication of auto-scale management in response to peak load events.
 • Automated identification and resolution of fault domains as part of production APM
 monitoring solutions.

For more information,
email _info@infuse.it or visit infuse.it

Infuse Consulting Ltd | QEII Conference Centre
Broad Sanctuary | London SW1P 3EE | UK
Tel: +44 (0)20 3755 5135

Infuse is a UK software testing company that provides
modern software testing, transformation consulting
and test environment management. We specialise in
test automation and performance engineering.

Our strong alliance and partner network enables us
to deliver the right solution for every client. Infuse
is an Micro Focus Partner in Application Delivery
Management (ADM), an Oracle Gold Partner in
Application Quality Management (AQM), a CA Partner
in Dev and Test and SAP Partner. We have a global
partner network to enhance our delivery capabilities
beyond that of a typical UK software testing company.

ABOUT INFUSE

http://infuse.it
http://linkedin.com/company/infuseconsulting
https://twitter.com/infusegroup
http://facebook.com/infuse-consulting

	Button 30:
	Button 31:
	Button 32:
	Button 33:

